Visual nonlinear discriminant analysis for classifier design
نویسندگان
چکیده
We present a new method for analyzing classifiers by visualization, which we call visual nonlinear discriminant analysis. Classifiers that output posterior probabilities are visualized by embedding samples and classes so as to approximate posterior probabilities using parametric embedding. The visualization provides a better intuitive understanding of such classifier characteristics as separability and generalization ability than conventional methods. We evaluate our method by visualizing classifiers for an artificial data set.
منابع مشابه
Neural Quadratic Discriminant Analysis: Nonlinear Decoding with V1-Like Computation
Linear-nonlinear (LN) models and their extensions have proven successful in describing transformations from stimuli to spiking responses of neurons in early stages of sensory hierarchies. Neural responses at later stages are highly nonlinear and have generally been better characterized in terms of their decoding performance on prespecified tasks. Here we develop a biologically plausible decodin...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملAn Iterative Algorithm for KLDA Classifier
The Linear discriminant analysis (LDA) can be generalized into a nonlinear form ─ kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experime...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملMax-Mahalanobis Linear Discriminant Analysis Networks
A deep neural network (DNN) consists of a nonlinear transformation from an input to a feature representation, followed by a common softmax linear classifier. Though many efforts have been devoted to designing a proper architecture for nonlinear transformation, little investigation has been done on the classifier part. In this paper, we show that a properly designed classifier can improve robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006